Gas Water Heater with the Flame Guard® Safety System
Installation Instructions and Use & Care Guide

WARNING: If the information in these instructions is not followed exactly, a fire or explosion may result causing property damage, personal injury or death.

Do not store or use gasoline or other flammable vapors and liquids in the vicinity of this or any other appliance.

WHAT TO DO IF YOU SMELL GAS

- Do not try to light any appliance.
- Do not touch any electrical switch; do not use any phone in your building.
- Immediately call your gas supplier from a neighbor’s phone. Follow the gas supplier’s instructions.
- If you cannot reach your gas supplier, call the fire department.

Installation and service must be performed by a qualified installer, service agency or the gas supplier.

INSTALLER:
- AFFIX THESE INSTRUCTIONS TO OR ADJACENT TO THE WATER HEATER.

OWNER:
- RETAIN THESE INSTRUCTIONS AND WARRANTY FOR FUTURE REFERENCE. RETAIN THE ORIGINAL RECEIPT AS PROOF OF PURCHASE.

To obtain technical, warranty, or service assistance during or after the installation of this water heater, visit our website at:
http://www.americanwaterheater.com
or call toll free 1-800-999-9515

When calling for assistance, please have the following information ready:
1. Model number
2. 7 digit product number
3. Serial number
4. Date of installation
5. Place of purchase

Table of Contents .. 2
Your safety and the safety of others are very important.

We have provided many important safety messages in this manual and on your appliance. Always read and obey all safety messages.

This is the safety alert symbol. This symbol alerts you to potential hazards that can kill or hurt you and others. All safety messages will follow the safety alert symbol and either the word "DANGER" or "WARNING." These words mean:

DANGER
You can be killed or seriously injured if you don’t immediately follow instructions.

WARNING
You can be killed or seriously injured if you don’t follow instructions.

All safety messages will tell you what the potential hazard is, tell you how to reduce the chance of injury, and tell you what can happen if the instructions are not followed.

Important Instructions

- Do not use this appliance if any part has been under water. Immediately call a qualified service technician. Water heaters subjected to flood conditions or anytime the gas controls, main burner or pilot have been submerged in water require replacement of the entire water heater.

- Hydrogen gas can be produced in a hot water system that has not been used for a long period of time (generally two weeks or more). Hydrogen gas is extremely flammable and can ignite when exposed to a spark or flame. To prevent the possibility of injury under these conditions, we recommend the hot water faucet be opened for several minutes at the kitchen sink before using any electrical appliance which is connected to the hot water system. If hydrogen is present, there will probably be an unusual sound such as air escaping through the faucet as water begins to flow. Do not smoke or have any open flame near the faucet at the time it is open.

The California Safe Drinking Water and Toxic Enforcement Act requires the Governor of California to publish a list of substances known to the State of California to cause cancer, birth defects, or other reproductive harm, and requires businesses to warn of potential exposure to such substances.

Warning: This product contains a chemical known to the State of California to cause cancer, birth defects, or other reproductive harm.

This appliance can cause low-level exposure to some of the substances listed, including formaldehyde, carbon monoxide, and soot.

Table Of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Heater Safety</td>
<td>1-2</td>
</tr>
<tr>
<td>Installing Your Gas Water Heater</td>
<td>3-16</td>
</tr>
<tr>
<td>Unpacking the Water Heater</td>
<td>3</td>
</tr>
<tr>
<td>Location Requirements</td>
<td>4</td>
</tr>
<tr>
<td>Gas Supply</td>
<td>6</td>
</tr>
<tr>
<td>Combustion Air Supply and Ventilation</td>
<td>7</td>
</tr>
<tr>
<td>Water System Piping</td>
<td>12</td>
</tr>
<tr>
<td>Installation Checklist</td>
<td>16</td>
</tr>
<tr>
<td>Operating Your Water Heater</td>
<td>17-19</td>
</tr>
<tr>
<td>Lighting Instructions</td>
<td>17</td>
</tr>
<tr>
<td>Operational Conditions</td>
<td>19</td>
</tr>
<tr>
<td>Maintenance of Your Water Heater</td>
<td>20-24</td>
</tr>
<tr>
<td>Troubleshooting Chart</td>
<td>24-26</td>
</tr>
<tr>
<td>Repair Parts Illustration</td>
<td>27-28</td>
</tr>
</tbody>
</table>
INSTALLING YOUR GAS WATER HEATER

Consumer Information

This water heater is design-certified by CSA International as a Category I, non-direct vented water heater which takes its combustion air either from the installation area or from air ducted to the unit from the outside.

This water heater must be installed according to all local and state codes or, in the absence of local and state codes, the “National Fuel Gas Code”, ANSI Z223.1(NFPA 54)-latest edition. This is available from the following:

CSA America, Inc.
8501 East Pleasant Valley Road
Cleveland, OH 44131

National Fire Protection Agency
1 Batterymarch Park
Quincy, MA 02269

Check your phone listings for the local authorities having jurisdiction over your installation.

Consumer Responsibilities

This manual has been prepared to acquaint you with the installation, operation, and maintenance of your gas water heater and provide important safety information in these areas.

Read all of the instructions thoroughly before attempting the installation or operation of this water heater.

Do not discard this manual. You or future users of this water heater will need it for future reference.

Service to the Flame Guard® Safety System should only be performed by a qualified service technician.

Examples of qualified service technicians include: those trained in the plumbing and heating industry, local gas utility personnel, a licensed plumber, or an authorized service person.

Important: This water heater has a resettable thermal switch installed as part of the Flame Guard® Safety System. DO NOT attempt to disable or modify this feature in any way.

The manufacturer and seller of this water heater will not be liable for any damages, injuries, or deaths caused by failure to comply with the installation and operating instructions outlined in this manual.

If you lack the necessary skills required to properly install this water heater, or you have difficulty following the instructions, you should not proceed but have a qualified service technician perform the installation of this water heater. Massachusetts code requires this water heater to be installed in accordance with Massachusetts Plumbing and Fuel Gas Code 248 CMR Section 2.00 and 5.00.

A data plate identifying your water heater can be found next to the gas control valve/thermostat. When referring to your water heater, always have the information listed on the data plate readily available.

Retain your original receipt as proof of purchase.

Unpacking the Water Heater

WARNING

Excessive Weight Hazard

Use two or more people to move and install water heater unless proper handling equipment is utilized.

Failure to do so can result in back or other injury.

Important: Do not remove any permanent instructions, labels, or the data label from either the outside of the water heater or on the inside of water heater panels.

• Remove exterior packaging and place installation components aside.
• Inspect all parts for damage prior to installation and start-up.
• Completely read all instructions before attempting to assemble and install this product.
• After installation, dispose of/recycle all packaging materials.
Location Requirements

WARNING

Carbon Monoxide Poisoning Hazard

Do not install in a mobile home. Doing so can result in death or carbon monoxide poisoning.

The Flame Guard® Safety System is designed to reduce the risk of flammable vapor-related fires. The patented system protects your family by trapping the burning vapors within the water heater combustion chamber through the special flame-trap. The burning vapors literally “burn themselves out” without escaping back into the room. In the event of a flammable vapor incident, the Flame Guard® Safety System shuts off the gas supply to the water heater’s burner and pilot, preventing re-ignition of any remaining flammable vapors in the area. This will disable the water heater until the system is reset. Note: Not following these instructions and/or an inadequate air supply can cause the Flame Guard® Safety System to disable the water heater. Please make required installation and venting/air supply changes prior to resetting the system.

Important: This water heater has a resettable thermal switch installed as part of the Flame Guard® Safety System. DO NOT attempt to disable or modify this feature in any way.

Do not use or store flammable products such as gasoline, solvents, or adhesives in the same room or area near the water heater. If such flammables must be used, all gas burning appliances in the vicinity must be shut off and their pilot lights extinguished. Open the doors and windows for ventilation while flammable substances are in use.

If flammable liquids or vapors have spilled or leaked in the area of the water heater, leave the area immediately and call the fire department from a neighbor’s home. Do not attempt to clean the spill until all ignition sources have been extinguished.

Do not store combustible materials (boxes, magazines, clothes, etc.) on or in close proximity to the water heater.

Site Location

- Select a location near the center of the water piping system. The water heater must be installed indoors and in a vertical position on a level surface. DO NOT install in bathrooms, bedrooms, or any occupied room normally kept closed.
- Locate the water heater as close to the chimney or gas vent as practical. Consider the vent system piping and combustion air supply requirements when selecting the water heater location. The venting system must be able to run from the water heater to termination with minimal length and elbows.
- Locate the water heater near the existing gas piping. If installing a new gas line, locate the water heater to minimize the pipe length and elbows.

Note: This water heater must be installed according to all local and state codes or, in the absence of local and state codes, the “National Fuel Gas Code”, ANSI Z223.1(NFPA 54)-latest edition.
Important: The water heater should be located in an area where leakage of the tank or connections will not result in damage to the area adjacent to the water heater or to lower floors of the structure. Due to the normal corrosive action of the water, the tank will eventually leak after an extended period of time. Also any external plumbing leak, including those from improper installation, may cause early failure of the tank due to corrosion if not repaired. If the homeowner is uncomfortable with making the repair a qualified service technician should be contacted.

A suitable metal drain pan should be installed under the water heater as shown below, to help protect the property from damage which may occur from condensate formation or leaks in the piping connections or tank. The pan must limit the water level to a maximum depth of 1-3/4” and be two inches wider than the heater and piped to an adequate drain. **The pan must not restrict combustion air flow.** Locate the water heater near a suitable indoor drain. Outside drains are subject to freezing temperatures which can obstruct the drain line. The piping should be at least 3/4” ID and pitched for proper drainage. Under no circumstances will the manufacturer or seller of this water heater be held liable for any water damage which is caused by your failure to follow these instructions.

- The water heater should be located in an area not subject to freezing temperatures. Water heaters located in unconditioned spaces (i.e., attics, basements, etc.) may require insulation of the water piping and drain piping to protect against freezing. The drain and controls must be easily accessible for operation and service. Maintain proper clearances as specified on the data plate.

- Do not locate the water heater near an air-moving device. The operation of air-moving devices such as exhaust fans, ventilation systems, clothes dryers, fire-places, etc., can affect the proper operation of the water heater. Special attention must be given to conditions these devices may create. Flow reversal of flue gases may cause an increase of carbon monoxide inside of the dwelling.

- If the water heater is located in an area that is subjected to lint, dirt, and oil, it may be necessary to periodically clean the flame-trap (see “External Inspection & Cleaning of the Flame-trap,” Page 22).

Clearances and Accessibility

Notice: Minimum clearances from combustible materials are stated on the data plate adjacent to the gas control valve/thermostat of the water heater.

The water heater is certified for installation on a combustible floor.

- **Important:** If installing over carpeting, the carpeting must be protected by a metal or wood panel beneath the water heater. The protective panel must extend beyond the full width and depth of the water heater by at least three inches (76.2mm) in any direction; or if in an alcove or closet installation, the entire floor must be covered by the panel.

- Figure 2 may be used as a reference guide to locate the specific clearance locations. A minimum of 24 inches of front clearance should be provided for inspection and service.

State of California

Note: The water heater must be braced, anchored, or strapped to avoid moving during an earthquake. Contact local utilities for code requirements in your area or call 1-800-999-9515 and request instructions.
Gas Supply

WARNING

Explosion Hazard

Use a new CSA approved gas supply line.
Install a shut-off valve.
Do not connect a natural gas water heater to an L.P. gas supply.
Do not connect an L.P. gas water heater to a natural gas supply.
Failure to follow these instructions can result in death, explosion, or carbon monoxide poisoning.

Gas Requirements

Read the data plate to be sure the water heater is made for the type of gas you will be using in your home. This information will be found on the data plate located near the gas control valve/thermostat. If the information does not agree with the type of gas available, do not install or light. Call your dealer.

Note: An odorant is added by the gas supplier to the gas used by this water heater. This odorant may fade over an extended period of time. Do not depend upon this odorant as an indication of leaking gas.

Gas Piping

The gas piping must be installed according to all local and state codes or, in the absence of local and state codes, the “National Fuel Gas Code”, ANSI Z223.1(NFPA 54)-latest edition.

Table 1 on page 7 provides a sizing reference for commonly used gas pipe materials. Consult the “National Fuel Gas Code” for the recommended gas pipe size of other materials.

Refer to Figure 3
Note: When installing gas piping, apply approved pipe joint compound.

1. Install a readily accessible manual shut-off valve in the gas supply line as recommended by the local utility. Know the location of this valve and how to turn off the gas to this unit.
2. Install a drip leg (if not already incorporated as part of the water heater) as shown. The drip leg must be no less than three inches long for the accumulation of dirt, foreign material, and water droplets.
3. Install a ground joint union between the gas valve/thermostat and the manual shut-off valve. This is to allow easy removal of the gas valve/thermostat.
4. Turn the gas supply on and check for leaks. Test the water heater by brushing on an approved noncorrosive leak detection solution. Bubbles forming indicate a leak. Correct any leak found.

Figure 3
Gas Piping

Gas Pressure

Important: The gas supply pressure must not exceed the maximum supply pressure as stated on the water heater’s data plate. The minimum supply pressure is for the purpose of input adjustment.

Gas Pressure Testing

Important: This water heater and its gas connection must be leak tested before placing the appliance in operation.

- If the code requires the gas lines to be tested at a pressure exceeding 14” W.C., the water heater and its manual shut-off valve must be disconnected from the gas supply piping system and the line capped.
- If the gas lines are to be tested at a pressure less than 14” W.C., the water heater must be isolated from the gas supply piping system by closing its manual shut-off valve.

U.L. recognized fuel gas and carbon monoxide (CO) detectors are recommended in all applications and should be installed using the manufacturer’s instructions and local codes, rules, or regulations.

Note: Air may be present in the gas lines and could prevent the pilot from lighting on initial start-up. The gas lines should be purged of air by a qualified service technician after installation of the gas piping system.

WARNING

Explosion Hazard

Have a qualified service technician make sure L.P. gas pressure does not exceed 13” water column.
Failure to do so can result in death, explosion, or fire.
Combustion Air Supply and Ventilation

WARNING

Carbon Monoxide Warning

Follow all the local and state codes or, in the absence of local and state codes, the “National Fuel Gas Code”, ANSI Z223.1 (NFPA 54)- latest edition to properly install vent system.

Failure to do so can result in death, explosion, or carbon monoxide poisoning.

Important: Air for combustion and ventilation must not come from a corrosive atmosphere. Any failure due to corrosive elements in the atmosphere is excluded from warranty coverage.

The following types of installation (not limited to the following) will require outdoor air for combustion due to chemical exposure and may reduce but not eliminate the presence of corrosive chemicals in the air:

- beauty shops
- photo processing labs
- buildings with indoor pools
- water heaters installed in laundry, hobby, or craft rooms
- water heaters installed near chemical storage areas

Combustion air must be free of acid-forming chemicals such as sulfur, fluorine, and chlorine. These elements are found in aerosol sprays, detergents, bleaches, cleaning solvents, air fresheners, paint, and varnish removers, refrigerants, and many other commercial and household products. When burned, vapors from these products form highly corrosive acid compounds. These products should not be stored or used near the water heater or air inlet.

Combustion and ventilation air requirements are determined by the location of the water heater. The water heater may be located in either an open (unconfined) area or in a confined area or small enclosure such as a closet or small room. Confined spaces are areas with less than 50 cubic feet for each 1,000 BTUH of the total input for all gas-using appliances.

Table 1: Natural Gas Pipe Capacity Table (Cu. Ft./Hr.)

Capacity of gas pipe of different diameters and lengths in cu. ft. per hr. with pressure drop of 0.3 in. and specific gravity of 0.60 (natural gas).

<table>
<thead>
<tr>
<th>Nominal Iron Pipe Size, in.</th>
<th>Length of Pipe, Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>10</td>
</tr>
<tr>
<td>3/4</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>1-1/4</td>
<td>40</td>
</tr>
<tr>
<td>1-1/2</td>
<td>50</td>
</tr>
</tbody>
</table>

60	70
80	90
100	125
150	175
200	

After the length of pipe has been determined, select the pipe size which will provide the minimum cubic feet per hour required for the gas input rating of the water heater. By formula:

\[
\text{Cu. Ft. Per Hr. Required} = \frac{\text{Gas Input of Water Heater (BTU/HR)}}{\text{Heating Value of Gas (BTU/FT³)}}
\]

The gas input of the water heater is marked on the water heater data plate. The heating value of the gas (BTU/FT³) may be determined by consulting the local natural gas utility.

Table 2: LP Gas Capacity Table

Maximum capacity of pipe in thousands of BTU per hour of undiluted liquefied petroleum gases (at 11 inches water column pressure). Based on a pressure drop of 0.5 inch water column.

<table>
<thead>
<tr>
<th>Nominal Iron Pipe Size, in.</th>
<th>Length of Pipe, Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>10</td>
</tr>
<tr>
<td>3/4</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>1-1/4</td>
<td>40</td>
</tr>
<tr>
<td>1-1/2</td>
<td>50</td>
</tr>
<tr>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>100</td>
<td>125</td>
</tr>
<tr>
<td>150</td>
<td>175</td>
</tr>
<tr>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>

Example: Input BTU requirement of the water heater 100,000 BTUH.

Total pipe length, 80 feet = 3/4" IPS required.

Unconfined Space

A water heater in an unconfined space uses indoor air for combustion and requires at least 50 cubic feet for each 1,000 BTUH of the total input for all gas appliances. The table below shows a few examples of the minimum square footage (area) required for various BTUH inputs.

<table>
<thead>
<tr>
<th>BTUH Input</th>
<th>Minimum Square Feet with 8’ Ceiling</th>
<th>Typical Room with 8’ Ceiling</th>
</tr>
</thead>
<tbody>
<tr>
<td>30,000</td>
<td>188</td>
<td>9 x 21</td>
</tr>
<tr>
<td>45,000</td>
<td>281</td>
<td>14 x 20</td>
</tr>
<tr>
<td>60,000</td>
<td>375</td>
<td>15 x 25</td>
</tr>
<tr>
<td>75,000</td>
<td>469</td>
<td>15 x 31</td>
</tr>
<tr>
<td>90,000</td>
<td>563</td>
<td>20 x 28</td>
</tr>
<tr>
<td>105,000</td>
<td>657</td>
<td>20 x 33</td>
</tr>
<tr>
<td>120,000</td>
<td>750</td>
<td>25 x 30</td>
</tr>
<tr>
<td>135,000</td>
<td>844</td>
<td>28 x 30</td>
</tr>
</tbody>
</table>

Important:
- The area must be open and be able to provide the proper air requirements to the water heater. Areas that are being used for storage or contain large objects may not be suitable for water heater installation.
- Water heaters installed in open spaces in buildings with unusually tight construction may still require outdoor air to function properly. In this situation, outside air openings should be sized the same as for a confined space.
- Modern home construction usually requires supplying outside air into the water heater area.

Confined Space

For the correct and proper operation of this water heater, ample air must be supplied for the combustion, ventilation, and dilution of flue gases. Small enclosures and confined areas must have two permanent openings so that sufficient fresh air can be drawn from outside of the enclosure. One opening shall be within 12 inches of the top and one within 12 inches of the bottom of the enclosure as shown in Figure 4.

The size of each opening (free area) is determined by the total BTUH input of all gas utilization equipment (i.e., water heaters, furnaces, clothes dryers, etc.) and the method by which the air is provided. The BTUH input can be found on the water heater data plate. Additional air can be provided by two methods:

1. All air from inside the building.
2. All air from outdoors.

All Air from Inside the Building

When additional air is to be provided to the confined area from additional room(s) within the building, the total volume of the room(s) must be of sufficient size to properly provide the necessary amount of fresh air to the water heater and other gas utilization equipment in the area. If you are unsure that the structure meets this requirement, contact your local gas utility company or other qualified agency for a safety inspection.

Each of the two openings shall have a minimum free area of 1 square inch per 1,000 BTUH of the total input rating of all gas utilization equipment in the confined area, but not less than 100 square inches (Figure 5).
All Air from Outdoors

Outdoor fresh air can be provided to a confined area either directly or by the use of vertical and horizontal ducts. The fresh air can be taken from the outdoors or from crawl or attic spaces that freely communicate with the outdoors. Attic or crawl spaces cannot be closed and must be properly ventilated to the outside.

Ductwork must be of the same cross-sectional area as the free area of the opening to which they connect. The minimum dimension of rectangular air ducts cannot be less than three inches.

The size of each of the two openings is determined by the method in which the air is to be provided. Refer to Table 3 to calculate the minimum free area for each opening. Figures 6, 7, and 8 are typical examples of each method.

Louvers and Grilles

In calculating free area for ventilation and combustion air supply openings, consideration must be given to the blocking effect of protection louvers, grilles, and screens. These devices can reduce airflow, which in turn may require larger openings to achieve the required minimum free area. Screens must not be smaller than 1/4" mesh. If the free area through a particular design of louver or grille is known, it should be used in calculating the specified free area of the opening. If the design and free area are not known, it can be assumed that most wood louvers will allow 20 - 25% of free area while metal louvers and grilles will allow 60 - 75% of free area.

Louvers and grilles must be locked open or interconnected with the equipment so that they are opened automatically during equipment operation.

Keep louvers and grilles clean and free of debris or other obstructions.

Table 3

Minimum Free Area of Permanent Openings for Ventilation and Combustion Air Supply - All Air from Outdoors Only.

Based on the total BTUH input rating for all gas utilizing equipment within the confined space.

<table>
<thead>
<tr>
<th>Opening Source</th>
<th>Minimum Free Area Per Opening (sq. in.)</th>
<th>Reference Drawing</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Direct to outdoors</td>
<td>1 Square inch per 4000 BTUH</td>
<td>Figure 6</td>
</tr>
<tr>
<td>Vertical ducts</td>
<td>1 Square inch per 4000 BTUH</td>
<td>Figure 7</td>
</tr>
<tr>
<td>Horizontal ducts</td>
<td>1 Square inch per 2000 BTUH</td>
<td>Figure 8</td>
</tr>
</tbody>
</table>

Example: A water heater with an input rate of 50,000 BTUH using horizontal ducts would require each opening to have a minimum free area of 25 square inches.

Minimum free area = 50,000 BTUH x 1 sq. in. / 2000 BTUH = 25 Sq. Inches.

* These openings connect directly with the outdoors through a ventilated attic, a ventilated crawl space, or through an outside wall.

Consult the local codes of your area for specific ventilation and combustion air requirements.
Vent Pipe System

This water heater uses a non-direct, single-pipe vent system to remove exhaust gases created by the burning of fossil fuels. Air for combustion is taken from the immediate water heater location or is ducted in from the outside (see “Combustion Air Supply and Ventilation”).

This water heater must be properly vented for the removal of exhaust gases to the outside atmosphere. Correct installation of the vent pipe system is mandatory for the proper and efficient operation of this water heater and is an important factor in the life of the unit.

The vent pipe must be installed according to all local and state codes or, in the absence of local and state codes, the “National Fuel Gas Code”, ANSI Z223.1(NFPA 54)-latest edition. The vent pipe installation must not be obstructed so as to prevent the removal of exhaust gases to the outside atmosphere.

Important: The use of vent dampers is not recommended by the manufacturer of this water heater. Although some vent dampers are certified by CSA International, this certification applies to the vent damper device only and does not mean they are certified for use on this water heater.

U.L. recognized fuel gas and carbon monoxide (CO) detectors are recommended in all applications and should be installed using the manufacturer’s instructions and local codes, rules, or regulations.

Important: If you lack the necessary skills required to properly install this venting system, you should not proceed, but get help from a qualified service technician.

Drafthood Installation

Align the legs of the drafthood with the slots provided. Insert the legs and secure the drafthood to the water heater’s top with the four screws provided as shown in Figure 9. Do not alter the drafthood in any way. If you are replacing an existing water heater, be sure to use the new drafthood supplied with the water heater.

Figure 9
Drafthood Installation

![Diagram of drafthood installation](image)

Sheet Metal Screws (four provided)

Legs

Drafthood

Legs

Slots

Jacket top

Slots

Install the drafthood with the four screws provided.

Vent Pipe Size

It is important that you follow the guidelines in these instructions for sizing a vent pipe system. If a transition to a larger vent size is required, the vent transition connection must be made at the drafthood outlet.

Vent Connectors

2. Singlewall Vent Pipe.

Maintain the manufacturer’s specified minimum clearance from combustible materials when using type B doublewall vent pipe.

Vent connectors made of type B, doublewall vent pipe material may pass through walls or partitions constructed of combustible material if the minimum listed clearance is maintained.

Maintain a six inch minimum clearance from all combustible materials when using singlewall vent pipe.

Important: Singlewall vent pipe cannot be used for water heaters located in attics and may not pass through attic spaces, crawl spaces or any confined or inaccessible location. A singlewall metal vent connector cannot pass through any interior wall.

When installing a vent connector, please note the following:

- Install the vent connector avoiding unnecessary bends, which create resistance to the flow of vent gases.
- Install without dips or sags with an upward slope of at least 1/4-inch per foot.
- Joints must be fastened by sheet metal screws or other approved means. It must be supported to maintain clearances and prevent separation of joints and damage.
- The length of the vent connector cannot exceed 75% of the vertical vent height.
- The vent connector must be accessible for cleaning, inspection, and replacement.
- Vent connectors cannot pass through any ceiling, floor, firewall, or fire partition.

Important: Existing vent systems must be inspected for obstructions, corrosion, and proper installation.
Chimney Connection

Important: Before connecting a vent to a chimney, make sure the chimney passageway is clear and free of obstructions. The chimney must be cleaned if previously used for venting solid fuel appliances or fireplaces. Also consult local and state codes for proper chimney sizing and application or, in the absence of local and state codes, the “National Fuel Gas Code”, ANSI Z223.1(NFPA 54)-latest edition.

- The connector must be installed above the extreme bottom of the chimney to prevent potentially blocking the flue gases.
- The connector must be firmly attached and sealed to prevent it from falling out.
- To aid in removing the connector, a thimble or slip joint may be used.
- The connector must not extend beyond the inner edge of the chimney as it may restrict the space between it and the opposite wall of the chimney (Figure 10).

Do not terminate the vent connector in a chimney that has not been certified for this purpose. Some local codes may prohibit the termination of vent connectors in a masonry chimney.

Vertical Exhaust Gas Vent

Vertical exhaust gas vents must be installed with U.L. listed type B vent pipe according to the vent manufacturer’s instructions and the terms of its listing.

It must be connected to the water heater’s drafthood by a certified vent connector or by directly originating at the drafthood opening.

Vertical gas vents must terminate with a listed cap or other roof assembly and be installed according to their manufacturer’s instructions.

Gas vents must be supported to prevent damage, joint separation, and maintain clearances to combustible materials (Figures 11 and 12).

Important: This gas vent must be terminated in a vertical position to facilitate the removal of the burnt gases.

An unused chimney flue or masonry enclosure may be used as a passageway for the installation of a gas vent (Figure 12).

Common (combined) venting is allowable with vertical type B vent systems and lined masonry chimneys.

Figures 10-12 are examples of vent pipe system installations and may or may not be typical for your specific application. Consult the “National Fuel Gas Code”, NFPA 54, ANSI Z223.1-latest edition and the guidelines set forth by prevailing local codes.

Water System Piping

Piping Installation

Piping, fittings, and valves should be installed according to the installation drawing (Figure 13). If the indoor installation area is subject to freezing temperatures, the water piping must be protected by insulation.

Water supply pressure should not exceed 80% of the working pressure of the water heater. The working pressure is stated on the water heater’s data plate. If this occurs, a pressure limiting valve with a bypass may need to be installed in the cold water inlet line. This should be placed on the supply to the entire house in order to maintain equal hot and cold water pressures.

Important: Heat cannot be applied to the water fittings on the heater as they may contain nonmetallic parts. If solder connections are used, solder the pipe to the adapter before attaching the adapter to the hot and cold water fittings.

Important: Always use a good grade of joint compound and be certain that all fittings are drawn up tight.

1. Install the water piping and fittings as shown in Figure 13. Connect the cold water supply (3/4" NPT) to the fitting marked “C”. Connect the hot water supply (3/4" NPT) to the fitting marked “H”.

Important: Some models may contain energy saving heat traps to prevent the circulation of hot water within the pipes. Do not remove the inserts within the heat traps.

2. The installation of unions in both the hot and cold water supply lines is recommended for ease of removing the water heater for service or replacement.

3. The manufacturer of this water heater recommends installing a tempering valve or an anti-scald device in the domestic hot water line as shown in Figure 14. These valves reduce the point-of-use temperature of the water by mixing cold and hot water and are readily available for use.

4. If installing the water heater in a closed water system, install an expansion tank in the cold water line as specified under “Closed System/Thermal Expansion” (Page 13).

5. Install a shut-off valve in the cold water inlet line. It should be located close to the water heater and be easily accessible. Know the location of this valve and how to shut off the water to the heater.

6. Install a temperature and pressure relief valve in the opening marked “Temperature and Pressure (T & P) Relief Valve” on the water heater. Add a discharge line to the opening of the T & P relief valve. Follow the instructions under “Temperature and Pressure Relief Valve” (Page 14).

7. After piping has been properly connected to the water heater, remove the aerator at the nearest hot water faucet. Open the hot water faucet and allow the tank to completely fill with water. To purge the lines of any excess air, keep the hot water faucet open for 3 minutes after a constant flow of water is obtained. Close the faucet and check all connections for leaks.
Please note the following:

DO NOT install this water heater with iron piping. The system should be installed only with piping that is suitable for potable (drinkable) water such as copper, CPVC, or polybutylene. **DO NOT** use PVC water piping.

DO NOT use any pumps, valves, or fittings that are not compatible with potable water.

DO NOT use valves that may cause excessive restriction to water flow. Use full flow ball or gate valves only.

DO NOT use 50/50 tin-lead solder (or any lead based solder) in potable water lines. Use 95/5 tin-antimony or other equivalent material.

DO NOT tamper with the gas valve/thermostat, igniter, thermocouple, or temperature and pressure relief valve. Tampering voids all warranties. Only qualified service technicians should service these components.

DO NOT use with piping that has been treated with chromates, boiler seal, or other chemicals.

DO NOT add any chemicals to the system piping which will contaminate the potable water supply.

Closed System/Thermal Expansion

Periodic discharge of the temperature and pressure relief valve may be due to thermal expansion in a closed water supply system. The water utility supply meter may contain a check valve, backflow preventer or water pressure reducing valve. This will create a closed water system. During the heating cycle of the water heater, the water expands causing pressure inside the water heater to increase. This may cause the temperature and pressure relief valve to discharge small quantities of hot water. To prevent this, it is recommended that a diaphragm-type expansion tank (suitable for potable water) be installed on the cold water supply line. The expansion tank must have a minimum capacity of 1.5 U.S. gallons for every 50 gallons of stored water. Contact the local water supplier or plumbing inspector for information on other methods to control this situation.

Important: Do not plug or remove the temperature and pressure relief valve.
Temperature and Pressure Relief Valve

WARNING

Explosion Hazard

If the temperature and pressure relief valve is dripping or leaking, have a qualified service technician replace it.

Do not plug valve.

Do not remove valve.

Failure to follow these instructions can result in death or explosion.

Discharge line 3/4” minimum

Do not cap or plug.

6” maximum

For protection against excessive pressures and temperatures, a temperature and pressure relief valve must be installed in the opening marked “T & P RELIEF VALVE” (see Figure 15A). This valve must be design certified by a nationally recognized testing laboratory that maintains periodic inspection of the production of listed equipment or materials as meeting the requirements for Relief Valves and Automatic Shut-off Devices for Hot Water Supply Systems, ANSI Z21.22. The function of the temperature and pressure relief valve is to discharge water in large quantities in the event of excessive temperature or pressure developing in the water heater. The valve’s relief pressure must not exceed the working pressure of the water heater as stated on the data plate.

Important: Only a new temperature and pressure relief valve should be used with your water heater. Do not use an old or existing valve as it may be damaged or not adequate for the working pressure of the new water heater. Do not place any valve between the relief valve and the tank.

Figure 15A
Temperature and Pressure Relief Valve Installation

The Temperature & Pressure Relief Valve:

- Must not be in contact with any electrical part.
- Must be connected to an adequate discharge line.
- Must not be rated higher than the working pressure shown on the data plate of the water heater.

The Discharge Line:

- Must not be smaller than the pipe size of the relief valve or have any reducing coupling installed in the discharge line.
- Must not be capped, blocked, plugged or contain any valve between the relief valve and the end of the discharge line.
- Must terminate a maximum of six inches above a floor drain or external to the building.
- Must be capable of withstanding 250°F (121°C) without distortion.
- Must be installed to allow complete drainage of both the valve and discharge line.

T&P Valve and Pipe Insulation (Some Models)

1. Locate the T&P Valve on the water heater.
2. Locate the slit running the length of the insulation.
3. Spread this slit open and slip it over the T&P Valve. See Figure 15B. Apply gentle pressure to the insulation to ensure it is fully seated on the T&P Valve. Once sealed secure the insulation with a section of tape.

Important: The insulation or tape should not block or cover the T&P drain opening. Also the insulation or tape should not block or hinder access to the T&P valve manual relief lever.

4. Next locate the hot water (outlet) & cold water (inlet) pipes to the water heater.
5. Select one of the sections of pipe insulation and locate the slit that runs the length of the insulation.
6. Spread the slit open at the base of the insulation and slip it over the cold water (inlet) pipe. Apply gentle pressure along the length of the insulation to ensure it is fully seated around the cold water pipe. Also ensure that the base of insulation is flush with the water heater. Once seated, secure the insulation with a section of tape.
7. Repeat steps 5 through 6 for the hot water (outlet) pipe.

Figure 15B
T&P Valve and Pipe Insulation

For protection against excessive pressures and temperatures, a temperature and pressure relief valve must be installed in the opening marked “T & P RELIEF VALVE” (see Figure 15A). This valve must be design certified by a nationally recognized testing laboratory that maintains periodic inspection of the production of listed equipment or materials as meeting the requirements for Relief Valves and Automatic Shut-off Devices for Hot Water Supply Systems, ANSI Z21.22. The function of the temperature and pressure relief valve is to discharge water in large quantities in the event of excessive temperature or pressure developing in the water heater. The valve’s relief pressure must not exceed the working pressure of the water heater as stated on the data plate.

Important: Only a new temperature and pressure relief valve should be used with your water heater. Do not use an old or existing valve as it may be damaged or not adequate for the working pressure of the new water heater. Do not place any valve between the relief valve and the tank.

14
Special Applications
Combination Space Heating/Potable Water System

Some water heater models are equipped with inlet/outlet tappings for use with space heating applications. If this water heater is to be used to supply both space heating and domestic potable (drinking) water, the instructions listed below must be followed.

- Be sure to follow the manual(s) shipped with the air handler system.
- This water heater is not to be used as a replacement for an existing boiler installation.
- Do not use with piping that has been treated with chromates, boiler seal or other chemicals and do not add any chemicals to the water heater piping.
- If the space heating system requires water temperatures in excess of 120°F, a tempering valve or an anti-scald device should be installed per its manufacturer’s instructions in the domestic (potable) hot water supply to limit the risk of scald injury.
- Pumps, valves, piping and fittings must be compatible with potable water.
- A properly installed flow control valve is required to prevent thermosiphoning. Thermosiphoning is the result of a continuous flow of water through the air handler circuit during the off cycle. Weeping (blow off) of the temperature and pressure relief valve (T & P) or higher than normal water temperatures are the first signs of thermosiphoning.
- The domestic hot water line from the water heater should be vertical past any tempering valve or supply line to the air handler to remove air bubbles from the system. Otherwise, these bubbles will be trapped in the air handler heat exchanger coil, reducing the efficiency.
- Do not connect the water heater to any system or components previously used with non-potable water heating appliances when used to supply potable water.

Some jurisdictions may require a backflow preventer in the incoming cold water line. This may cause the temperature and pressure relief valve on the water heater to discharge or weep due to expansion of the heated water. A diaphragm-type expansion tank suitable for potable water will normally eliminate this weeping condition. Please read and follow the manufacturer’s instructions for the installation of such tanks.

Also see “Water System Piping” (Page 12) for additional instructions on the safe and correct installation and operation of this water heater.

Solar Installation

If this water heater is used as a solar storage heater or as a backup for the solar system, the water supply temperatures to the water heater tank may be in excess of 120°F. A tempering valve or other temperature limiting valve must be installed in the water supply line to limit the supply temperature to 120°F.

Note: Solar water heating systems can often supply water with temperatures exceeding 180°F and may result in water heater malfunction.
Installation Checklist

Water Heater Location
- Centrally located with the water piping system. Located as close to the gas piping and vent pipe system as possible.
- Located indoors and in a vertical position. Protected from freezing temperatures.
- Proper clearances from combustible surfaces maintained and not installed directly on a carpeted floor.
- Provisions made to protect the area from water damage.
- Drain pan installed and piped to an adequate drain.
- Installation area free of corrosive elements and flammable materials.
- Sufficient room to service the water heater.
- DO NOT install in bathrooms, bedrooms, or any occupied room normally kept closed.

Combustion Air Supply and Ventilation
- Sufficient fresh air supply for proper water heater operation.
- Fresh air not taken from areas that contain negative pressure producing devices such as exhaust fans, fireplaces, etc.
- Fresh air supply free of corrosive elements and flammable vapors.
- Fresh air openings sized correctly with consideration given to the blocking effect of louvers and grilles.
- Ductwork is the same cross-sectional area as the openings.

Vent Pipe System
- Drafthood properly installed.
- Vent connectors securely fastened with screws and supported properly to maintain six inch clearance.
- Vent connector made of approved material and sized correctly.
- Vent pipe system must be installed according to all local and state codes or, in the absence of local and state codes, the “National Fuel Gas Code”, ANSI Z223.1(NFPA 54)-latest edition.
- Flue baffle engaged in slots provided in the flue tube.
- Flue way, draft hood, or vent pipe system not obstructed in any way.

Water System Piping
- Temperature and pressure relief valve properly installed with a discharge line run to an open drain and protected from freezing.
- All piping properly installed and free of leaks.
- Heater completely filled with water.
- Closed system pressure build-up precautions installed.
- Tempering valve installed per manufacturer's instructions, when applicable (See Water Temperature Regulation section.)

Gas Supply and Piping
- Gas supply is the same type as listed on the water heater data plate.
- Gas line equipped with shut-off valve, union, and drip leg.
- Approved pipe joint compound used.
- Adequate pipe size and of approved material.
- An approved noncorrosive leak detection solution to check all connections and fittings for possible gas leaks. Correct any leak found.

Important Information About Your Water Heater

This gas water heater was manufactured to voluntary safety standards to reduce the likelihood of a flammable vapor ignition incident. New technology used in meeting these standards makes this product less tolerant of installation errors or improper installation environments. Please review the following information and make any necessary installation upgrades or changes:

1. Check for insufficient combustion air. Insufficient air for the combustion of gas will result in the flame becoming "lazy," thereby allowing heat to build up in the combustion chamber. This excessive heat will cause a thermal switch on the door assembly to trip. Important: DO NOT attempt to disable or modify this feature in any way. Is the water heater installed in a closet or other small, enclosed space? If so:
 - Is there an opening for make-up air to enter the room/area?
 - Is the opening of sufficient size? Remember, if there are other gas-fired or air-consuming appliances in the same room, you need more make-up air. Refer to the Location Requirements section of this water heater manual for specific requirements.
 - Is there a furnace/air handler in the same room/area as the water heater? If so, has a return air duct system been attached that exits the room? If so, check for leaks on the air duct system. If no air duct system is present, correct immediately by contacting a local Heating, Ventilation, Air-Conditioning & Refrigeration (HVAC-R) authorized service provider.

2. Check for proper drafting at the water heater draft hood. Make sure all other appliances in the area are operating and all doors are closed when performing the draft test. To perform the draft test, open a hot water faucet for 3-5 minutes or until the burner ignites, and then check for a draft at the inlet to the draft hood (top of the heater) using a match or small amount of smoke. The smoke should be pulled into the draft hood. If there is no draft:
 - Recheck #1.
 - Check the vent system for restrictions/obstructions and check the vent termination height. Refer to the Air Supply and Ventilation section of this water heater manual for specific requirements.

3. Is the installed environment dirty (excessive amounts of lint, dirt, dust, etc.)? If so, make sure the flame arrestor located on the bottom of the water heater has been cleaned. Refer to the Maintenance of your Water Heater section of this manual for information on cleaning the flame-trap.

4. Is it possible that flammable vapors entered the water heater and were ignited in the burner area (a flammable vapor incident)? If a flammable vapor incident has occurred or if you are unsure whether it has, call the number below immediately.

Proper installation will ensure the safe, effective and efficient operation of the water heater. Make sure that you review and follow the instructions in this manual. Questions? Call 1-800-999-9515.
Read and understand these directions thoroughly before attempting to light or re-light the pilot. Make sure the viewpoint is not missing or damaged. (See Figure 23) Make sure the tank is completely filled with water before lighting the pilot. Check the data plate near the gas control valve/thermostat for the correct gas. Do not use this water heater with any gas other than the one listed on the data plate. If you have any questions or doubts, consult your gas supplier or gas utility company.

FOR YOUR SAFETY READ BEFORE LIGHTING

A. This appliance has a pilot which is lighted by a piezoelectric igniter. When lighting the pilot, follow these instructions exactly.
B. BEFORE LIGHTING smell all around the appliance area for gas. Be sure to smell next to the floor because some gas is heavier than air and will settle on the floor.

WHAT TO DO IF YOU SMELL GAS:
- Do not try to light any appliance.
- Do not touch any electrical switch; do not use any phone in your building.
- Immediately call your gas supplier from a neighbor’s phone. Follow the gas supplier’s instructions.
- If you cannot reach your gas supplier, call the fire department.
- Do not try to light any appliance. If you then smell gas, STOP! Follow “B” in the safety warning above. If you do not smell gas go to the next step.

C. Use only your hand to push in or turn the gas control knob. Never use tools. If the knob will not push in or move by hand, don’t try to repair it, call a qualified service technician. Force or attempted repair may result in a fire or explosion.
D. Do not use this appliance if any part has been under water. Immediately call a qualified service technician to inspect the appliance. Water heaters subjected to flood conditions or anytime the gas controls, main burner or pilot have been submerged in water require replacement of the entire water heater.
E. DO NOT USE THIS APPLIANCE IF THERE HAS BEEN AN IGNITION OF VAPORS. Immediately call a qualified service technician to inspect the appliance. Water heaters subjected to a flammable vapor ignition will show a discoloration on the air intake grid and require replacement of the entire water heater.

LIGHTING INSTRUCTIONS

1. STOP! It is imperative that you read all the safety warnings before lighting the pilot.
2. Remove the outer door.
3. Turn the temperature dial counterclockwise to its lowest setting.
4. Depress the dial stop and turn gas control knob clockwise to the “OFF” position.
5. To clear any gas that may have accumulated wait ten (10) minutes. If you then smell gas, STOP! Follow “B” in the safety warning above. If you do not smell gas go to the next step.
6. Turn the gas control knob counterclockwise to “PILOT”.
7. Depress the reset button all the way in and IMMEDIATELY depress the igniter button until you hear a loud click. Observe the pilot through the viewport. Do not release the reset button. Repeat immediately if pilot does not light on the first try. If the pilot does not light by the fourth attempt with the igniter, repeat steps 4 - 7. Continue to hold the button for about (1) minute after the pilot is lit. Release the reset button and it will pop back up. Pilot should remain lit. If the pilot light goes out, repeat steps 3 - 7.

IMPORTANT: If the pilot will not stay lit after several tries, depress the dial stop and turn gas control knob to “OFF”, then call your service technician or gas supplier.

IMPORTANT: If the reset button (see graphic at step 3) does not pop up when released, stop and immediately shut off the gas at the line valve or tank. Call your service technician or gas supplier.

8. Turn the gas control knob clockwise to “ON”.
9. Set the temperature dial to the desired setting.
10. Replace the outer door.

TO TURN OFF GAS TO APPLIANCE

1. Turn the temperature dial counterclockwise to its lowest setting.
2. Turn the gas control knob clockwise to the “OFF” position.
L.P.G. (Bottled Propane) Models
Liquefied petroleum gas is over 50% heavier than air and in the occurrence of a leak in the system, the gas will settle at floor level. Basements, crawl spaces, skirted areas under mobile homes (even when ventilated), closets and areas below ground level will serve as pockets for the accumulation of gas. Before lighting an L.P. gas water heater, smell all around the appliance at floor level. If you smell gas, follow the instructions as given in the warning on the front page.

When your L.P. tank runs out of fuel, turn off the gas at all gas appliances including pilot lights. After the tank is refilled, all appliances must be re-lit according to their manufacturer’s instructions.

Checking the Draft

WARNING

Burn Hazard
Do not touch vent.
Doing so can result in burns.

After successfully lighting the water heater, allow the unit to operate for 15 minutes and check the draft hood relief opening for proper draft. Make sure all other appliances in the area are operating and all doors are closed when performing the draft test. Pass a match flame around the relief opening of the draft hood. A steady flame drawn into the opening indicates proper draft. If the flame flutters or is blown out, combustion products are escaping from the relief opening. If this occurs, do not operate the water heater until proper adjustments or repairs are made to the vent pipe system.

Burner Flames
Inspect the burner flames through the viewport and compare them to the drawings in Figure 18. A properly operating burner should produce a soft blue flame. Blue tips with yellow inner cones are satisfactory. The tips of the flame may have a slight yellow tint. The flame should not be all yellow or have a sharp blue-orange color. Contaminated air may cause an orange colored flame. Contact a qualified service technician if the flame is not satisfactory.

Stacking
Stacking occurs when a series of short draws of hot water (3 gallons or less) are taken from the water heater tank. This causes increased cycling of the burner and can result in increased water temperatures at the hot water outlet. An anti-scald device is recommended in the hot water supply line to reduce the risk of scald injury.

Emergency Shut Down
Important: Should overheating occur or the gas supply fails to shut off, turn off the water heater’s manual gas control valve and call a qualified service technician.

Water Temperature Regulation

WARNING

Water temperature over 125°F can cause severe burns instantly or death from scalds.
Children, disabled and elderly are at highest risk of being scalded.
Feel water before bathing or showering.
Temperature limiting valves are recommended.

The thermostat is adjusted to its lowest temperature when it is shipped from the factory. Water temperature can be regulated by moving the temperature dial to the preferred setting. The preferred starting point is 120°F. Align the index bar on the thermostat with the desired water temperature as shown in Figure 19. There is a hot water scald potential if the thermostat is set too high.

Important: Adjusting the thermostat past the 120°F bar on the temperature dial will increase the risk of scald injury. Hot water can produce first degree burns within:

- 120°F (49°C) more than 5 minutes
- 130°F (54°C) at 20 seconds
- 140°F (60°C) at 3 seconds
- 150°F (66°C) at 1-1/2 seconds
- 160°F (71°C) at less than 1 second

Note: During low demand periods when hot water is not being used, a lower thermostat setting will reduce energy losses and may satisfy your normal hot water needs. If hot water use is expected to be more than normal, a higher thermostat setting may be required to meet the increased demand. When leaving your home for extended periods (vacations, etc.) turn the temperature dial to its lowest setting. This will maintain the water at low temperatures with minimum energy losses and prevent the tank from freezing during cold weather.
Operational Conditions

Condensation

Moisture from the products of combustion condenses on the tank surface and the outside jacket of the water heater and forms drops of water which may fall onto the burner or other hot surfaces. This will produce a “sizzling” or “frying” noise. This condensation is normal and should not be confused with a leaking tank. Condensation may increase or decrease at different times of the year.

High efficient energy saver water heaters will produce larger amounts of condensation on initial start-up or when a large amount of hot water is being used. Do not confuse this with a “tank leak”. Once the water reaches a temperature of 120°F and the tank warms up (usually 1-2 hours), the condensation will stop.

Important: It is always recommended that a suitable drain pan be installed under the water heater to protect the area from water damage resulting from normal condensation production, a leaking tank or piping connections. Refer to “Location Requirements” on page 4. Under no circumstances is the manufacturer to be held responsible for any water damage in connection with this water heater.

Water Heater Sounds

During the normal operation of the water heater, sounds or noises may be heard. These noises are common and may result from the following:

1. Normal expansion and contraction of metal parts during periods of heat-up and cool-down.
2. Condensation causes sizzling and popping within the burner area and should be considered normal.
3. Sediment buildup in the tank bottom will create varying amounts of noise and may cause premature tank failure. Drain and flush the tank as directed under “Draining and Flushing”.

Smoke/Odor

The water heater may give off a small amount of smoke and odor during the initial start-up of the unit. This is due to the burning off of oil from metal parts of a new unit and will disappear after a few minutes of operation.

Safety Shut-off

This water heater is designed to automatically shut-off in the event of the following:

1. The pilot flame is extinguished for any reason.
2. The water temperature exceeds 180°F (83°C).
3. Excessive combustion chamber temperatures.
4. The ignition of flammable vapors.

A thermocouple is used to determine if a pilot flame is present, and will shut off the gas supply to the main burner and the pilot if the flame is absent. This unit is also equipped with a thermal switch, designed to shut off the gas supply in the event the heater has been exposed to flammable vapors (spilled gasoline or paint fumes for example), poor combustion caused by a blocked vent or insufficient combustion air. If the thermal switch opens, check the flame-trap for signs of high temperature (blue or black discoloration), and inspect your installation for any problems with venting or combustion air (See Pilot Light Troubleshooting Flowchart on page 26). Reset the thermal switch by depressing the small button in the center of the thermal switch. Important: Correct any issues prior to resetting the thermal switch. DO NOT attempt to disable or modify the thermal switch in any way. Contact the Product Service and Support Department for service information at 1-800-999-9515.

A high temperature limit switch or ECO (Energy Cut Off) in the tank is used to shut off the unit if the water temperature exceeds 180°F (83°C). The ECO is a single use switch and requires complete replacement of the entire thermostat. If the ECO should function, the water heater cannot be used until the thermostat is replaced by a qualified service technician. Contact your local dealer for service information.

Anode Rod/Water Odor

Each water heater contains at least one anode rod, which will slowly deplete while protecting the glass-lined tank from corrosion and prolonging the life of the water heater. Once the anode is depleted, the tank will start to corrode, eventually developing a leak. Certain water conditions will cause a reaction between this rod and the water. The most common complaint associated with the anode rod is a "rotten egg smell" produced from the presence of hydrogen sulfide gas dissolved in the water. Do not remove this rod permanently as it will void any warranties. The parts list includes a special anode that can be ordered if water odor or discoloration occurs. This rod may reduce but not eliminate water odor problems. The water supply system may require special filtration equipment from a water conditioning company to successfully eliminate all water odor problems.

Artificially softened water is exceedingly corrosive because the process substitutes sodium ions for magnesium and calcium ions. The use of a water softener may decrease the life of the water heater tank.

The anode rod should be removed from the water heater tank every 3 years for inspection. The following are typical (but not all) signs of a depleted anode rod:

- The majority of the rods diameter is less than 3/8”.
- Significant sections of the support wire (approx. 1/3 or more of the anode rod’s length) are visible.

If the anode rod show signs of either or both it should be replaced. Note: Whether re-installing or replacing the anode rod, check for any leaks and immediately correct if found. In replacing the anode:

1. Turn off gas supply to the water heater.
2. Shut off the water supply and open a nearby hot water faucet to depressurize the water tank.
3. Drain approximately 5 gallons of water from tank (Refer to “Draining and Flushing” for proper procedures). Close drain valve.
4. Remove old anode rod.
5. Use Teflon® tape or approved pipe sealant on threads and install new anode rod.
6. Turn on water supply and open nearby hot water faucet to purge air from water system. Check for any leaks and immediately correct any if found.
7. Restart the water heater as directed under "Operating Your Water Heater." See the "Repair Parts Illustration" for anode rod location on page 27.
MAINTENANCE OF YOUR WATER HEATER

Draining and Flushing

It is recommended that the tank be drained and flushed every 6 months to remove sediment which may build up during operation. The water heater should be drained if being shut down during freezing temperatures. To drain the tank, perform the following steps:

1. Turn off the gas to the water heater at the manual gas shut-off valve.
2. Close the cold water inlet valve.
3. Open a nearby hot water faucet.
4. Connect a hose to the drain valve and terminate it to an adequate drain.
5. Open the water heater drain valve and allow all the water to drain from the tank. Flush the tank with water as needed to remove sediment.

Note: The drain hose should be rated for at least 200°F. If the drain hose does not have this rating, open the cold water inlet valve and a nearby hot faucet until the water is no longer hot.

6. Close the drain valve, refill the tank, and restart the heater as directed under “Operating Your Water Heater”.

If the water heater is going to be shut down for an extended period, the drain valve should be left open.

Important: Condensation may occur when refilling the tank and should not be confused with a tank leak.

Routine Preventative Maintenance

At least annually, a visual inspection should be made of the venting and air supply system, piping systems, main burner, pilot burner, and flame-trap. Check the water heater for the following:

- Obstructions, damage, or deterioration in the venting system. Make sure the ventilation and combustion air supplies are not obstructed.
- Build up of soot and carbon on the main burner and pilot burner. Check for a soft blue flame.
- Leaking or damaged water and gas piping.
- Presence of flammable or corrosive materials in the installation area.
- Presence of combustible materials near the water heater.
- Verify proper operation after servicing this water heater.

Important: If you lack the necessary skills required to properly perform this visual inspection, you should not proceed, but get help from a qualified service technician.

Temperature and Pressure Relief Valve

WARNING

Explosion Hazard

If the temperature and pressure relief valve is dripping or leaking, have a qualified service technician replace it.

Do not plug valve.

Do not remove valve.

Failure to follow these instructions can result in death or explosion.

Manually operate the temperature and pressure relief valve at least once a year to make sure it is working properly. To prevent water damage, the valve must be properly connected to a discharge line which terminates at an adequate drain. Standing clear of the outlet (discharged water may be hot), slowly lift and release the lever handle on the temperature and pressure relief valve to allow the valve to operate freely and return to its closed position. If the valve fails to completely reset and continues to release water, immediately shut off the manual gas valve and the cold water inlet valve and call a qualified service technician.
Replacement Parts

The following maintenance procedures are for the Flame Guard® Safety System components and should be performed by a qualified service technician. Replacement parts may be ordered through your plumber or the local distributor. Parts will be shipped at prevailing prices and billed accordingly. When ordering replacement parts, always have the following information ready:

1. model, serial, and product number
2. type of gas
3. item number
4. parts description

See pages 27-28 for a list of available repair parts.

Removing the Manifold Assembly

1. Turn off the gas to the water heater at the manual shut-off valve (Figure 3).
2. Depress the dial stop and turn the gas control knob on the combination gas control valve/thermostat clockwise to the “OFF” position (Figure 19).
3. Remove the outer door.
4. Remove the two screws securing the manifold door assembly to the combustion chamber (Figure 22).
5. Disconnect the thermocouple (right-hand thread), pilot tube, the igniter wire from the igniter button, the two connectors attached to the thermal switch, and manifold tube at the thermostat. (Figures 22 & 23.) Note: L.P. gas systems use reverse (left-hand) threads on the manifold tube.
6. Grasp the manifold tube and push down slightly to free the manifold, pilot tube, and thermocouple.
7. Carefully remove the manifold assembly from the burner compartment. Be sure not to damage internal parts.

Removing the Burner from the Manifold Assembly

Natural Gas Burner (Low Nox)

1. Take off the burner by removing the two (2) screws located underneath the burner.
2. Check the burner to see if it is dirty or clogged. The burner may be cleaned with soap and hot water (Figure 24).

L.P. Gas Burner

1. Separate the pilot bracket from the L.P. burner by removing screw.
2. Loosen set screw located on top of the L.P. burner near the manifold door. Carefully, pull the burner away from the manifold door assembly.
3. Check the burner to see if it is dirty or clogged. The burner may be cleaned with soap and hot water (Figure 24B).
Replacing the Thermocouple
1. Remove the manifold assembly as directed previously.
2. Remove the retainer clip from the back of the two piece wire connector and remove the two piece wire connector from the manifold door (Figure 25).
3. Pull the thermocouple from the pilot assembly (Figure 29).

Be careful not to bend or alter the position of the pilot assembly components.
4. Push the new thermocouple through the holes in the pilot bracket. Insert the thermocouple tube into the holes provided in the pilot assembly until it clicks into place.
5. Position the new thermocouple through the larger opening of the two piece wire connector (Figure 25). Be sure igniter wire is positioned through the small opening of the two piece wire connector.
6. See “Replacing the Manifold Assembly” Page 23.

External Inspection & Cleaning of the Flame-trap
Although not likely to occur, if debris collects on the flame-trap, use a vacuum, compressed air, or a soft bristle brush to remove it. Note: If unable to inspect or clean the flame trap from underneath, follow the “Cleaning the Combustion Chamber and Flame-trap” instructions.

Cleaning the Combustion Chamber and Flame-trap
1. Follow procedure outlined in “Removing the Manifold Assembly”.
2. Use a vacuum cleaner/shop vac to remove all loose debris in the combustion chamber (Figure 28A). Use compressed air to clear any dust or debris that may have accumulated in the flame-trap.
3. Reassemble following the procedure under “Replacing the Manifold Assembly”.

Figure 25
Two Piece Wire Connector Assembly

Figure 26
Thermocouple Assembly

Figure 27
Flame-trap visual inspection

Figure 28A
Combustion Chamber and Flame-trap
Replacing the Manifold Assembly

WARNING

Explosion Hazard

Tighten both manifold door screws securely.

Remove any fiberglass between the door gasket and combustion chamber.

Replace viewport if glass is missing or damaged.

Replace two piece wire connector if missing or removed.

Replace door gasket if damaged.

Failure to do so can result in death, explosion, or fire.

1. Check the door gasket for damage or imbedded debris prior to installation.
2. Inspect the viewport for damage and replace as required.
3. Insert the manifold assembly into the burner compartment making sure that the tab of the manifold tube engages in the slot of the bracket inside the combustion chamber (Figure 28B). Note: The tab is located at the bottom of the burner on L.P. gas models.
4. Inspect the door gasket and make sure there is no fiberglass insulation between the gasket and the combustion chamber.
5. Replace the two screws which secure the manifold assembly door to the combustion chamber. Tighten securely. There should be no space between the gasket part of the manifold door and combustion chamber. **Do not operate the water heater if the door gasket is not sealed.**
6. Reconnect the two wire leads to the thermal switch, the manifold tubing, pilot tubing, and thermocouple to the thermostat. Important: DO NOT attempt to disable or modify the thermal switch in any way. Do not cross-thread or apply any thread sealant to these fittings.
 - Note: L.P. gas systems use reverse (left-hand) threads on the manifold tube.
 - The thermocouple nut should be started and turned all the way in by hand. An additional quarter turn with a 7/16” open-end wrench will then be sufficient to seat the lockwasher.
7. Reconnect the igniter wire.
8. Turn gas supply on at the manual gas shut-off valve, and check the gas supply and gas valve for leaks. Test the supply connections by brushing on an approved noncorrosive leak detection solution. Bubbles forming indicate a leak. Correct any leak found.
10. Verify proper operation and then replace the outer door.

Piezoelectric Igniter System

The piezoelectric igniter system consists of the igniter button, electrode, and wire. The pilot is ignited by an electric spark generated when the igniter button is pressed. The spark gap of 0.125 inch is set when the electrode is installed at the factory. (See Figure 29). Use only factory authorized piezoelectric igniter parts for replacement.

Testing the Igniter System

Turn off the gas to the water heater at the manual gas shut-off valve. Watch the electrode tip while activating the igniter. A visible spark should jump from the electrode. To avoid shock, do not touch the burner or any metal part on the pilot or pilot assembly. If no spark is visible, check the wire connections and make sure the electrode is not broken. Replace the igniter if defective. Dirt and rust on the pilot or electrode tip can prevent the igniter spark. Wipe clean with a damp cloth and dry completely. Rust can be removed from the electrode tip and metal surfaces by lightly sanding with an emery cloth or fine grit sandpaper.
Removing and Replacing the Gas Control Valve/Thermostat

Important: The gas control valve/thermostat is a standard valve with wire leads that connect to a thermal switch.

Removing the Gas Valve:
1. On the gas control valve/thermostat turn the temperature dial counterclockwise to its lowest setting. Depress the dial stop and turn the gas control knob clockwise to the “OFF” position (Figure 19).
2. Turn off the gas at the manual shut-off valve on the gas supply pipe (Figure 3).
3. Drain the water heater. Refer to the section of “Draining and Flushing” on page 20 and follow the procedure.
4. Disconnect the igniter wire from the igniter button. Remove the igniter button by depressing front and rear holding tabs and lift. Remove igniter bracket. Disconnect the thermocouple (right-hand threads), pilot tube, two wire leads at the thermal switch, and manifold tube at the gas control valve/thermostat (Figure 22). Note: L.P. gas systems use reverse (left-hand) threads on the manifold tube.
5. Refer to “Gas Piping” (Figure 3) and disconnect the ground joint union in the gas piping. Disconnect the remaining pipe from the gas control valve/thermostat.
6. To remove the gas valve, thread a correctly sized pipe into the inlet and use it to turn the gas valve (counterclockwise.) Do not use pipe wrench or equivalent to grip body. Damage may result, causing leaks. Do not insert any sharp objects into the inlet or outlet connections. Damage to the gas valve may result.

Replacing the Gas Valve:
To replace the gas control valve/thermostat, reassemble in reverse order. Important: This water heater has a resettable thermal switch installed. DO NOT attempt to disable or modify this feature in any way. When replacing the gas valve, thread a correctly sized pipe into the inlet and use it to turn the gas valve (clockwise.) DO NOT OVER TIGHTEN, damage may result.
- Be sure to use approved Teflon tape or pipe joint compound on the gas piping connections and fitting on the back of the gas control valve that screws into tank.
- Be sure to remove the pilot ferrule nut from the new gas control valve/thermostat.
- Turn the gas supply on and check the gas supply and gas valve for leaks. Test the supply connections by brushing on an approved noncorrosive leak detection solution. Bubbles forming indicate a leak. Correct any leak found.
- Be sure tank is completely filled with water before lighting and activating the water heater. Follow the “Lighting Instructions” on page 17. With the water heater lit check for leaks at the manifold and pilot connections. Bubbles forming indicate a leak. Correct any leak found.
- If additional information is required, contact the Service Department at: 1-800-999-9515.

Flame Guard® Safety System Operational Checklist
1. Manifold gasket properly sealed.
2. Viewport not damaged or cracked.
3. Flame-trap free of debris and undamaged.
4. Two piece wire connector properly installed.
5. No leaks at pilot and manifold connection.
6. Manifold door screws securely tightened.
7. Depress the thermal switch button to verify it is operational.

TROUBLESHOOTING CHART

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>POSSIBLE CAUSE(S)</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>BURNER WILL NOT IGNITE</td>
<td>1. Pilot not lit</td>
<td>1. Light pilot</td>
</tr>
<tr>
<td>2. Thermostat set too low</td>
<td>2. Turn temp. dial to desired temperature</td>
<td></td>
</tr>
<tr>
<td>3. No gas</td>
<td>3. Check with gas utility company</td>
<td></td>
</tr>
<tr>
<td>4. Dirt in the gas lines</td>
<td>4. Notify utility-install trap in gas line</td>
<td></td>
</tr>
<tr>
<td>5. Pilot line clogged</td>
<td>5. Clean, locate source and correct</td>
<td></td>
</tr>
<tr>
<td>6. Main burner line clogged</td>
<td>6. Clean, locate source and correct</td>
<td></td>
</tr>
<tr>
<td>7. Defective thermocouple</td>
<td>7. Replace thermocouple</td>
<td></td>
</tr>
<tr>
<td>8. Defective thermostat</td>
<td>8. Replace thermostat</td>
<td></td>
</tr>
<tr>
<td>9. Heater installed in a confined area</td>
<td>9. Provide fresh air ventilation</td>
<td></td>
</tr>
<tr>
<td>SMELLY WATER</td>
<td>1. Sulfides in the water</td>
<td>1. Replace the anode with a special anode</td>
</tr>
<tr>
<td>BURNER FLAME YELLOW-LAZY</td>
<td>1. Insufficient secondary air</td>
<td>1. Provide ventilation to water heater</td>
</tr>
<tr>
<td>2. Low gas pressure</td>
<td>2. Check with gas utility company</td>
<td></td>
</tr>
<tr>
<td>3. Flue clogged</td>
<td>3. Clean, locate source and correct</td>
<td></td>
</tr>
<tr>
<td>4. Main burner line clogged</td>
<td>4. Clean, locate source and correct</td>
<td></td>
</tr>
<tr>
<td>5. Heater installed in a confined area</td>
<td>5. Proper fresh air ventilation</td>
<td></td>
</tr>
<tr>
<td>6. Obstruction in main burner orifice</td>
<td>6. Clean or replace orifice</td>
<td></td>
</tr>
<tr>
<td>PILOT WILL NOT LIGHT OR REMAIN LIT</td>
<td>1. Defective igniter</td>
<td>1. Replace igniter pilot assembly</td>
</tr>
<tr>
<td>2. The thermal switch tripped</td>
<td>2. See Pilot Light Troubleshooting Flowchart section</td>
<td></td>
</tr>
<tr>
<td>3. Thermocouple connection loose</td>
<td>3. Finger tighten; then 1/4 turn with wrench</td>
<td></td>
</tr>
<tr>
<td>4. Air in gas line</td>
<td>4. Bleed the air from the gas line</td>
<td></td>
</tr>
<tr>
<td>5. Low gas pressure</td>
<td>5. Check with gas utility company</td>
<td></td>
</tr>
<tr>
<td>6. No gas</td>
<td>6. Check with gas utility company</td>
<td></td>
</tr>
<tr>
<td>7. Dirt in gas lines</td>
<td>7. Notify utility-install dirt trap in gas line</td>
<td></td>
</tr>
<tr>
<td>8. Cold drafts</td>
<td>8. Locate source and correct</td>
<td></td>
</tr>
<tr>
<td>9. Thermostat ECO switch open</td>
<td>9. Replace thermostat</td>
<td></td>
</tr>
<tr>
<td>10. Pilot line or orifice clogged</td>
<td>10. Clean, locate source and correct</td>
<td></td>
</tr>
<tr>
<td>11. Defective thermocouple</td>
<td>11. Replace thermocouple</td>
<td></td>
</tr>
<tr>
<td>12. Air for combustion obstructed</td>
<td>12. See maintenance section for inspection and cleaning of flame trap</td>
<td></td>
</tr>
<tr>
<td>13. Flammable vapors incident, Flame Guard® function utilized</td>
<td>13. Replace water heater, eliminate flammable vapors source. Call 1-800-999-9515</td>
<td></td>
</tr>
<tr>
<td>PROBLEM</td>
<td>POSSIBLE CAUSE(S)</td>
<td>CORRECTIVE ACTION</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
| **HIGH OPERATION COSTS** | 1. Thermostat set too high
2. Sediment or lime in tank
3. Water heater too small for job
4. Wrong piping connections
5. Leaking faucets
6. Gas leaks
7. Wasted hot water
8. Long runs of exposed piping
9. Hot water piping in exposed wall | 1. Set temperature dial to lower setting
2. Drain/flush-provide water treatment if needed
3. Install adequate heater
4. Correct piping-dip tube must be in cold inlet
5. Repair faucets
6. Check with utility-repair at once
7. Advise customer
8. Insulate piping
9. Insulate piping |
| **INSUFFICIENT HOT WATER** | 1. Thermostat set too low
2. Sediment or lime in tank
3. Water heater too small
4. Wrong piping connections
5. Leaking faucets
6. Wasted hot water
7. Long runs of exposed piping
8. Hot water piping in outside wall
9. Low gas pressure | 1. Turn temperature dial to desired setting
2. Drain/flush-provide water treatment if needed
3. Install adequate heater
4. Correct piping-dip tube must be in cold inlet
5. Repair faucets
6. Advise customer
7. Insulate piping
8. Insulate piping
9. Check with gas utility company |
| **SLOW HOT WATER RECOVERY** | 1. Insufficient secondary air
2. Flue clogged
3. Low gas pressure
4. Improper calibration
5. Thermostat set too low
6. Water heater too small
7. Wrong piping connections
8. Wasted hot water
9. Low gas pressure | 1. Provide ventilation to water heater. Check flue way, flue baffle, and burner
2. Clean flue, locate source and correct
3. Check with gas utility company
4. Replace thermostat
5. Turn temperature dial to desired setting
6. Install adequate heater
7. Correct piping-dip tube must be in cold inlet
8. Advise customer |
| **DRIP FROM RELIEF VALVE** | 1. Excessive water pressure
2. Heater stacking
3. Closed water system | 1. Use a pressure reducing valve and relief valve
2. Lower the thermostat setting
3. See "Closed System/Thermal Expansion" |
| **THERMOSTAT FAILS TO SHUT-OFF**| 1. Defective thermostat
2. Improper calibration | 1. Replace thermostat
2. Replace thermostat |
| **COMBUSTION ODORS** | 1. Insufficient secondary air
2. Flue clogged
3. Heater installed in a confined area | 1. Provide ventilation to water heater. Check flue way, flue baffle, and burner
2. Clean flue, locate source and correct
3. Check with gas utility company
4. Replace thermostat
5. Turn temperature dial to desired setting
6. Correct piping-dip tube must be in cold inlet
7. Insulate piping |
| **SMOKING AND CARBON FORMATION (SOOTING)** | 1. Insufficient secondary air
2. Low gas pressure
3. Flue clogged
4. Defective thermostat
5. Heater installed in a confined area
6. Burner flame yellow-lazy | 1. Provide ventilation to water heater. Check flue way, flue baffle, and burner
2. Clean flue, locate source and correct
3. Check with gas utility company
4. Replace thermostat
5. Provide fresh air ventilation
6. See “Burner Flame Yellow-Lazy” |
| **CONDENSATION** | 1. Temperature setting too low | 1. Increase the temperature setting |
| **BURNER FLAME FLOATS AND LIFTS OFF PORTS** | 1. Orifice too large
2. High gas pressure
3. Flue clogged
4. Cold drafts | 1. Replace with correct orifice
2. Check with gas utility company
3. Clean flue and burner-locate source and correct
4. Locate source and correct |
| **BURNER FLAME TOO HIGH** | 1. Orifice too large | 1. Replace with correct orifice |
| **FLAME BURNS AT ORIFICE** | 1. Defective thermostat
2. Low gas pressure | 1. Replace thermostat
2. Check with gas utility company |
| **PILOT FLAME TOO SMALL** | 1. Pilot line or orifice clogged
2. Low gas pressure | 1. Clean, locate source and correct
2. Check with gas utility company |
PILOT LIGHT TROUBLESHOOTING CHART

1. Does pilot light go out when button is released? **NO**
 - Check Draft. (See Checking the Draft section of this manual.)
 - Are the wires from the gas control valve/thermostat firmly connected to the switch? **NO**
 - Secure connections and attempt a relight.
 - Is the thermocouple connection loose? **NO**
 - Replace the gas control valve/thermostat.
 - Does the thermocouple pass the test? **NO**
 - Replace the thermocouple.

2. Has the thermal switch tripped? **YES**
 - Check for insufficient combustion air.
 - Are there openings for make-up air to enter the room? **NO**
 - Install correct size make-up air openings per the Combustion Air Supply and Ventilation section in this manual.
 - Are the openings of sufficient size? See Combustion Air Supply and Ventilation section in this manual for requirements. **NO**
 - Correct size of openings to allow sufficient air.

3. Is there a furnace/air handler in the same room as the water heater? **NO**
 - Does the return air duct for the furnace/air handler draw its air from a separate location than the water heater? See the Location Requirements section and the Combustion Air Supply section. **NO**
 - Contact a local Heating, Ventilation, Air-Conditioning & Refrigeration authorized service provider.

4. Is there proper drafting at the drafthood? See Checking the Draft section in this manual. **NO**
 - Check the vent system for restrictions/obstructions and check the vent termination height. Refer to the Installation Instructions section of this manual for specific requirements.
 - Is the flame-trap free from debris due to excessive lint, dirt, dust or oil? **NO**
 - Refer to the Use & Care Guide section of this manual for information on cleaning the flame-trap.
 - Check the water heater for a Flammable Vapor (FV) event. Note: it may be necessary to remove the manifold door assembly to visually inspect the water heater. Reference the Maintenance of your Water Heater section of this manual for removal instructions.

5. Is the igniter wire insulation burnt or show signs of discoloration? **NO**
 - Is the pilot tube damaged? **NO**
 - Is the flame-trap free from debris due to excessive lint, dirt, dust or oil? **NO**
 - Replace the gas control valve/thermostat.
 - Shut-off the gas supply to the water heater at the manual gas shut-off valve, then contact Customer Service at: 1-800-999-9515.
 - Does the flame-trap show signs of discoloration and/or debris? **YES**
 - Test the thermocouple using the following procedure: Disconnect the thermocouple from the gas control valve/thermostat. Using a multimeter with alligator clip leads, attach the red lead to the body (copper part) of the thermocouple. Attach the black lead to the end (silver part) of the thermocouple that connects to the gas control valve/thermostat. Follow the instruction to light the pilot and watch the voltage readings on the multimeter. After 45 seconds the meter should read 12 millivolts DC or more.

RISK OF UNACCEPTABLE PERFORMANCE
When ordering repair parts always give the following information:
1. Model, serial, and product number
2. Type of gas
3. Item number
4. Parts description

Repair Parts List

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Parts Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DRAFTHOOD</td>
</tr>
<tr>
<td>2</td>
<td>REDUCER RING - SOME MODELS</td>
</tr>
<tr>
<td>3</td>
<td>FLUE BAFFLE</td>
</tr>
<tr>
<td>4</td>
<td>HEAT TRAP (COLD) - SOME MODELS</td>
</tr>
<tr>
<td>5</td>
<td>HEAT TRAP (HOT) - SOME MODELS</td>
</tr>
<tr>
<td>6</td>
<td>COLD WATER DIP TUBE</td>
</tr>
<tr>
<td>7</td>
<td>ANODE ROD [▲]</td>
</tr>
<tr>
<td>8</td>
<td>TEMPERATURE & PRESSURE RELIEF VALVE (LOCATED TOP OR SIDE) [■]</td>
</tr>
<tr>
<td>9</td>
<td>DRAIN VALVE</td>
</tr>
<tr>
<td>10</td>
<td>GAS CONTROL VALVE/THERMOSTAT (with wire leads) [★]</td>
</tr>
<tr>
<td>11</td>
<td>OUTER DOOR</td>
</tr>
<tr>
<td>12*</td>
<td>PILOT ASSEMBLY KIT (Natural Gas) [★]</td>
</tr>
<tr>
<td>13*</td>
<td>PILOT ASSEMBLY KIT (L.P. Gas) [★]</td>
</tr>
<tr>
<td>14*</td>
<td>BURNER (Natural Gas/Low Nox) [★]</td>
</tr>
<tr>
<td>15*</td>
<td>BURNER (L.P. Gas) [★]</td>
</tr>
<tr>
<td>16*</td>
<td>MANIFOLD DOOR ASSEMBLY (Natural Gas/Low Nox) [★]</td>
</tr>
<tr>
<td>17*</td>
<td>MANIFOLD DOOR ASSEMBLY (L.P. Gas) [★]</td>
</tr>
<tr>
<td>18*</td>
<td>TWO PIECE WIRE CONNECTOR WITH RETAINER CLIP [★]</td>
</tr>
<tr>
<td>19*</td>
<td>MANIFOLD DOOR GASKET [★]</td>
</tr>
<tr>
<td>20*</td>
<td>VIEWPORT ASSEMBLY [★]</td>
</tr>
<tr>
<td>21*</td>
<td>PIEZOELECTRIC IGNITER BUTTON [★]</td>
</tr>
<tr>
<td>22*</td>
<td>THERMOCOUPLE [★]</td>
</tr>
</tbody>
</table>

*Pictured on next page.

LEGEND

- Special anode rod (see page 19)
- Temperature and Pressure Relief Valve is required, but may not be factory installed
- Unique: Flame Guard® Safety System parts
Listed Parts Kits and Illustrations

Item 12: Pilot assembly kit, which contains the pilot assembly, igniter electrode and retainer clip (Natural Gas)
Item 13: Pilot assembly kit, which contains the pilot assembly, igniter electrode and retainer clip (L.P. Gas)
Item 14: Burner (Natural Gas/Low Nox)
Item 15: Burner (L.P. Gas)
Item 16: Manifold door assembly which contains the manifold tube, gasket, door, pilot tube, thermocouple, two piece wire connector with retainer clip, thermal switch, and pilot assembly. (Natural Gas/Low Nox)
Item 17: Manifold door assembly which contains the manifold tube, gasket, door, pilot tube, thermocouple, two piece wire connector with retainer clip, thermal switch, and pilot assembly. (L.P. Gas)
Item 18: Contains two piece wire connector and retainer clip
Item 19: Contains manifold door gasket
Item 20: Contains viewport
Item 21: Contains piezoelectric igniter button
Item 22: Contains thermocouple